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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.

1. [Maximum mark: 5]

Let f(x) =x"+px’+ gx + 5 where p, g are constants.
The remainder when f'(x) is divided by (x + 1) is 7, and the remainder when f'(x) is divided
by (x —2) is 1. Find the value of p and the value of ¢.
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[Maximum mark: 7]
Let y=sin’0,0<0<m.
. dy
a) Find —. 2
(a) 0 [2]
dy

(b) Hence find the values of § for which a0 =2y.
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[Maximum mark: 5]

Two unbiased tetrahedral (four-sided) dice with faces labelled 1, 2, 3, 4 are thrown and
the scores recorded. Let the random variable T be the maximum of these two scores.
The probability distribution of T is given in the following table.

t 1 2 3 4

1 7

P(T=%) — a b —

16 16
(@) Find the value of a and the value of b. [3]
(b) Find the expected value of T. [2]
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[Maximum mark: 6]

Given that [~ f(x)dx=10 and [ f(x)dv=12, find
@ [ (f0)+2)dx; 4]

0) [ f(r+2)dr. 2]
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[Maximum mark: 6]

Solve (Inx)*— (In2)(Inx) < 2(In2)’.
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[Maximum mark: 7]

Use the principle of mathematical induction to prove that

2 3 n—-1
1+2(1] + 3(1] + 4(1] +. 1t n(lj 4" +_12 ,Where neZ".
2 2 2 2 2"
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[Maximum mark: 9]
Let y= arccos(fj.
2
d
(@) Find Ey' 2]
! x
(b) Find J arccos(gjdx. [7
0
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[Maximum mark: 5]

Let a=sinb, 0<b<g.

Find, in terms of b, the solutions of sin 2x=—a,0<x<m.
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Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.

9. [Maximum mark: 17]

5
Let f(x) = 2 S;X , xeR,x#0.
2x
(@) The graph of y =f(x) has a local maximum at A. Find the coordinates of A. [5]

(b) (i) Show that there is exactly one point of inflexion, B, on the graph of y = f(x).

(i)  The coordinates of B can be expressed in the form B(2“, b x 2’3“),
where a, b € Q. Find the value of a and the value of 5. [8]

(c) Sketch the graph of y = f(x) showing clearly the position of the points A and B. [4]
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Do not write solutions on this page.
10. [Maximum mark: 19]

The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0),
B(1,1,0),C(0,1,0) and D(0,0,1).

A

B

(a) Find the Cartesian equation of the plane 77,, passing through the points A, B and D. [3]
The Cartesian equation of the plane 17,, passing through the points B, C and D,is y +z=1.

(b) Find the angle between the faces ABD and BCD. [4]
The plane 77, passes through O and is normal to the line BD.

(c) Find the Cartesian equation of 77,. [3]
IT, cuts AD and BD at the points P and Q respectively.

(d) Show that P is the midpoint of AD. [4]

(e) Find the area of the triangle OPQ. [5]
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Do not write solutions on this page.

1. [Maximum mark: 14]
Consider w = 2(cos§ + isin%j.

(@) (i) Express w* and w’ in modulus-argument form.
(i)  Sketch on an Argand diagram the points represented by w’, w', w* and w’. [5]

These four points form the vertices of a quadrilateral, Q.

2143

(b) Show that the area of the quadrilateral Q is 5

[3]

Let z = 2(cosE + isinEJ, neZ". The points represented on an Argand diagram by
n n
1 2

Z2°,z', 2, ..., 2" form the vertices of a polygon P,

(c) Show that the area of the polygon P, can be expressed in the form a(b” - l)sinz,
where a,beR. n [6]
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